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We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy
quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm
to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with
a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements
show a 1% root-mean-square (RMS) flatness over a diameter of 0:28mm in the center of the flat-top beam
and better than 1.5% RMS flatness over its entire 1:43mm diameter. The power conversion efficiency is
37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the
incident beam. An interferometric measurement of the DMD surface flatness shows that phase unifor-
mity is maintained in the output beam. Our approach is highly flexible and is able to produce not only
flat-top beams with different parameters, but also any slowly varying target beam shape. It can be
used to generate the homogeneous optical lattice required for Bose–Einstein condensate cold atom
experiments. © 2009 Optical Society of America

OCIS codes: 140.3300, 070.6120.

1. Introduction

High-quality, flat-top laser beams are important in
many areas of optics and optical physics. By flat-
top, we mean a laser beam with a central region of
uniform irradiance surrounded by a transition region
to zero as radius increases. A top hat or perfect circle
function (Circ function) profile might be ideal, but it
is impractical to achieve. Thus, various shapes, such
as higher-order Gaussian and Lorentzian functions
or cosine tapers are used to achieve a transition re-
gion between the flat central region and zero irradi-
ance within a finite spatial frequency bandwidth.
In optics, flat-top beam applications include laser

welding, laser microfabrication, laser radar, laser
scanning, laser fusion, and optical processing. In op-

tical physics, flat-top beams could improve the sensi-
tivity of interferometric gravity wave detectors [1].
Ultracold atoms loaded into optical lattices have im-
portant applications, including optical lattice atomic
clocks [2] and quantum emulation [3]. Optical lat-
tices are formed by standing wave interference of
single-mode laser beams, generally of a Gaussian
transverse profile, and ultracold atoms are attracted
to the intensity minima or maxima by the optical di-
pole force. In such cold atom applications, flat-top
beams can lessen the undesirable effects of spatial
inhomogeneities by creating an optical lattice in
which the potential wells are of uniform depth.

Our objective is to create a well-controlled laser
beam to form the standing wave optical lattice poten-
tial for ultracold atom experiments. In this case,
achieving a high degree of flatness over the central
region is of primary interest. The phase of the wave
front is also important to establish a uniform optical
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standing wave field; a uniform, flat phase front over
the flat-top region is required. The transition region
and wings of the beam are less important as the cold
atoms never see this region and remain confined in
the lowest potential region. Finally, in our applica-
tion, we can sacrifice some degree of conversion effi-
ciency from the input Gaussian profile beam to the
desired profile in order to achieve a high degree of
beam shape control and a minimum root-mean-
square (RMS) deviation from the targeted beam
shape. A conversion efficiency of 25%–50% with a
peak power of 25%–50% of the input Gaussian beam
is sufficient provided the other criteria are met. For
cold atom experiments, an ultimate intensity flat-
ness of the order of 0.1% RMS is desired. In the first
step toward this goal, we want to get as close as pos-
sible to a 1% RMS error in a flat-top beam by using
an accurate initial measurement of the input Gaus-
sian beam and a good design algorithm for the beam
shaper. This first step is the subject of this paper. For
the future, one might consider refinement of the
beam based on repeated measurements of the beam
profile or of the cold atom distribution, which is even
more sensitive to small variations in the optical field.
For beam refinement, peaks could be suppressed and
valleys lifted toward the mean to achieve a more
accurate flattop.
A laser beam with homogeneous intensity can be

generated through various approaches. Here, we
briefly compare techniques that use transmissive
optics (images of masks and masklike mirrors), re-
fractive optics (lenses and aspheric elements), and
diffractive optics (with propagation to a Fourier
transform plane or to a near-field plane). Metal
masks have been used in transmissive optical
beam-shaping systems. One way to generate a flat-
top beam is via serrated-tooth apodizers designed
by relating serration dimensions and spatial filter
parameters. Auerbach and Karpenko [4] reported a
flat-top beam profile produced by a serrated-edge
aperture followed by a spatial filter. Although this
approach can produce a flat-top beam that is both flat
in intensity and phase, it requires a known input in-
tensity profile matched to the apodizer design. It is,
of course, possible to make this technique adaptive
by forming the serrated aperture by reflection from
a DMD spatial light modulator (SLM). Later work
by Dorrer and Zuegel [5] demonstrated the error-
diffusion technique to design and simulate the per-
formance of metal masks that formed the desired
target beam profile in an image plane following a
low-pass filter. Our design is derived from this meth-
od, and so it will be described in more detail in
Section 3.
Hoffnagle and Jefferson [6] used a refractive opti-

cal system composed of two aspheric lenses to con-
vert a collimated Gaussian beam into a flat-top
beam. This method achieved 5% RMS intensity var-
iation in a flat-top beam with 78% power conversion.
The design has high power-conversion efficiency, is
achromatic, and can achieve a flat output profile in

both intensity and phase. However, since the calcu-
lation of lens surfaces is based on specific input
and output beam shapes, the whole system can only
work well for the single input–output combination.
In addition, the technique can do nothing to reduce
the effect of spatial noise and imperfections present
in real laser beams.

The use of diffractive optics and holographic opti-
cal elements is popular for producing arbitrary light
distributions. The conversion of Gaussian beams
using diffractive optical elements (DOEs) has been
intensively studied for many years. However, these
methods have drawbacks when used to produce
flat-top beams with flat phase. This difficulty was ad-
dressed by Aleksoff et al. [7], who used two DOEs: the
first to produce a near-field flat-top beam profile with
nonflat phase and a second one to flatten the phase.
Their result showed roughly 20% RMS variation in a
square cross-section, flat-top beam and a near dif-
fraction limited (but not ideally sinc-shaped) far-field
spot, indicating good phase flatness.

Another diffractive approach is to use an annular-
phase plate containing two ormore zones with binary
phase values (usually 0 and π). Based on the original
proposal by Veldkamp and Kastner [8], various
schemes have been published to produce flat-top
beams from an input Gaussian beam [9–12]. How-
ever, since this binary phase plate is centrosym-
metric, the input Gaussian beam also needs to
have a very good centrosymmetric Gaussian inten-
sity profile. This requirement limits the application
of the binary annular-phase optical element.

To achieve a design that is adaptable to arbitrary
input and output beam shapes, iterative Fourier
transform algorithms (IFTA) have been used to de-
sign patterns for phase-only SLMs (or for fixed phase
plates) for beam shaping. In a recent improvement to
these techniques, Pasienski and DeMarco [13] re-
ported a new IFTA to create the square cross-section,
flat-top intensity profile. Their result pushes inten-
sity error to an unimportant region of the output
plane and reduces the error in the measurement re-
gion. In their adaptation of the IFTA, intensity is
constrained only in the measurement region of the
output plane, and phase is unconstrained. In a simu-
lated result for an ideal phase-only SLM, they
reported an RMS error of 1.5% with a power conver-
sion efficiency of 45%. No data for the phase flatness
were given. In general, such solutions are designed
for a phase-only SLM and thus are inherently an
approximation to ideal phase and amplitude modu-
lation for the DOE.

Good examples of flat-top beams of very wide dia-
meter (as compared to the equivalent focused Gaus-
sian) are those results that use an IFTA or analytic
solution to generate a DOE having a large parabolic
phase component [14–16]. Although there is discus-
sion as to the best IFTA to use to produce the lowest
intensity noise in a flattop [13], it is the uncon-
strained phase that has the most important effect
on the performance of the flattop through focus.
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The DOE is placed before or after a lens, and the flat-
top is formed in the focal plane of the lens. In this
case, the parabolic phase component of the DOE
shifts the plane with the smallest focus spot away
from the focal plane of the lens, while the flattop
is formed at the focal plane of the lens. Thus, the flat-
top is formed in a plane of misfocus of the combined
optical system. The flattop contains a large parabolic
wavefront curvature and either converges or di-
verges rapidly. Although wide and flat, this flat-top
output would be unsatisfactory for any application
where phase or depth of focus is important.
We have chosen the transmissive approach using a

digital micromirror device (DMD), Texas Instru-
ments (TI) Digital DLP SLM, with an imaging sys-
tem containing a low-pass filter. This system is
expected to give a reasonably uniform phase and
can control the light transmission in a programmed
way. Adapting the technique of Dorrer and Zuegel [5]
and adding further iterative pattern refinement, we
design a DMD reflectance function that will produce
the required beam shape after spatial filtering. We
begin with a discussion of our approach to making
flat-top laser beams in Section 2. The SLM pattern
design algorithm is described in Section 3, followed
by the experimental results in Section 4. In Section 5,
we compare our results to the performance of various
other methods reported to produce flat-top beams
with respect to intensity uniformity, phase flatness,
and flexibility. A concluding summary follows in
Section 6.

2. Approach to Making Flat-Top Laser Beams

The target flat-top function used in the work re-
ported here is an eighth-order super-Lorentzian.
Other functions have been tested in simulation only
(eighth-order super-Gaussian and cosine taper simi-
lar to the eighth-order super-Lorentzian) and by gen-
erating a flat-top beam and measuring the flat-top
profile (cosine taper). These tests, reported in
Section 4, showed no significant difference in RMS
flatness between functions that has a similar spatial
frequency bandwidth. Generating flat-top beams
based on different functions demonstrates the adapt-
ability of our method, and that the differences
between these functions of similar spatial bandwidth
do not affect the quality of the flat-top beam
produced.
Several factors need to be considered to make a

high-quality flat-top beam. First, accurately mea-
sured profiles of the input beam and the output
flat-top beam are necessary. Second, the DMD pat-
tern and spatial filter need to be designed properly
to produce the desired multiplicative reflectance
curve shown in Fig. 1. Finally, the flat-top beam pro-
file needs to be measured before fringes or dirty spots
on optical components can degrade it. This implies
a stringent requirement on optical quality and
cleaning.
To produce and measure flat-top beams, we con-

structed a test bench consisting of a laser, a DMD

SLM, and an imaging telescope with a spatial filter.
The general layout of the test bench is shown in
Fig. 2. The DMD was the TI Discovery 1100 platform
with 1024 × 768 pixels at a pitch of 13:68 μm. The
input beam from a He–Ne laser (approximately
Gaussian) is expanded and collimated with a 5× tele-
scope to best fit the DMD size (14 × 10:5mm). No ef-
fort was made to clean up this beam or to ensure that
its profile was accurately Gaussian. In the beam path
to the DMD, a 45° mirror on a kinematic mount was
inserted in order to form an equivalent plane to the
DMD surface at the CCD camera face. The camera
was placed at exactly the same distance from themir-
ror as the DMD. This ensured that the image cap-
tured by the camera was exactly the same as the
one incident on the DMD. This image was sent to
an algorithm that computed the binary reflectance
function for the DMD. After the mirror was removed
and the pattern written to the DMD, the beam re-
flected from the DMD and passed through a telescope
with a low-pass filter (pinhole) at the back focal plane
of the first lens. The output flat-top beam profile was
measured at the output image plane of the telescope.
We use the words “reflects” and “multiplicative re-
flection” to summarize the process of nth-order dif-
fraction near the blaze angle of the DMD mirrors
tilted to the ON state to produce the output beam.

To accurately measure the input and output beam
profiles, we used the Scorpion SCOR-20SOM camera
by Point Grey Research, Inc. that was prepared by
Spiricon, Inc. to be windowless for accurate beam-
profiling measurements with Spiricon laser beam
diagnostic software. The Scorpion camera uses the
Sony ICX274AL black and white CCD chip with
4:4 μm square pixels in a 1600 × 1200 array. The ab-
sence of the protective window minimizes fringes or
diffraction patterns caused by parallel surfaces and
dirty spots.

The ability to reduce camera artifacts enables us to
measure high-quality beam profiles. At the laser

Fig. 1. (Color online) Cross sections of a simulated Gaussian in-
put beam (rG ¼ 256 pixels), an eighth-order super-Lorentzian (SL)
beam (rSL ¼ rG=1:5 ¼ 171 pixels), and the desired reflectance func-
tion, R, to transform one into the other. The beam profiles and R
are defined in Eqs. (3) and (4).
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wavelength of 633nm, the external quantum effi-
ciency of the camera is 31% and the full-well capacity
for each pixel is 8000 electrons [17]. Thus, for
measurements of the output flat-top beam at the
3100 digital number (DN) level, the photon noise
is around 0.18% after 16-frame averaging. The im-
provement in SNR is proportional to the square root
of the number of frames being averaged. The mea-
sured spatial gain noise matches the camera specifi-
cation of 0.8%. In addition, the raw 12 bit image data
(0 to 4095) are stored for each frame. Digitization at
12 bits has the ability to represent a detailed image
and reduce the digitization noise to a negligible level
as compared to the other noise sources.
The way in which the flat-top laser beam is pro-

duced is based on binary DMD modulation plus ima-
ging optics that includes a low-pass filter. The input
Gaussian wave with the amplitude distribution
g1ðx; yÞ is incident on the DMD, a binary SLM. The
binary DMD pattern, DMDðx; yÞ, is determined by
the measurement of the input beam and a two-step
algorithm (details will be given in Section 3). Thus,
after the DMD, the amplitude distribution of the nth-
order diffracted light (nearest the blaze angle),
g2ðx; yÞ, is given by

g2ðx; yÞ ¼ g1ðx; yÞ × DMDðx; yÞ: ð1Þ

In the imaging telescope, the Fourier transform of
the wave leaving the DMD surface is formed in
the back focal plane of the first lens. A pinhole placed
at this Fourier plane serves as a low-pass filter. The
amplitude distribution in the frequency domain after
the pinhole is given by

g3ðf x; f yÞ ¼ Ffg2ðx; yÞg × hðf x; f yÞ; ð2Þ

where Ff g represents the Fourier transform opera-
tor and hðf x; f yÞ is the binary-amplitude transmis-
sion of the pinhole. At the output plane, the light
intensity distribution is the magnitude squared of
the Fourier transform of g3ðf x; f yÞ). By proper control
of the DMD pattern and the radius of the pinhole, a
flat-top laser beam can be generated.
After designing the DMD pattern, it is important

that the input Gaussian beam be aligned exactly on
top of the DMD pattern (in x, y, and rotation). In the
optical setup, a shadow mask is placed in front of the
diverting mirror to acquire an additional image of
the incident Gaussian beam with the shadow mask

inserted, as shown in Fig. 2. The shadow mask needs
to have as fine a pattern as possible without being
totally destroyed by diffraction. Therefore, a trade-
off needs to be made. In the experiment, we used a
three-bar pattern (0:5mm × 2:5mm each with a
0:5mm space) from the Air Force resolution chart
(Group 0, Element 1) or a circular hole array
(diameter ¼ 2mm and pitch ¼ 2:4mm).

The picture with the shadow mask is processed to
create a binary digitized image of the shadow mask.
This pattern is input to the DMD to facilitate the x, y,
and rotation adjustment of the DMD with respect to
the incident beam. The first lens in the imaging tele-
scope focuses the modulated light into an optical
power meter. This intensity represents the cross cor-
relation of the input Gaussian containing the shadow
mask pattern with the binary DMD pattern of the
same shadow mask. The position of the DMD is ad-
justed for maximum power that is the peak of the
cross correlation and correct alignment position.
After the flat-top beam is generated, final adjust-
ment of x and y is conducted by monitoring the
RMS error in the flat-top region by using Spiricon la-
ser beam diagnostics software to achieve the lowest
RMS variation.

3. DMD Pattern Design Algorithm

The binary DMD pattern is designed by an error-
diffusion algorithm followed by iterative refinement.
A flow chart of our algorithm is shown in Fig. 3. The
basic error-diffusion algorithm is based on that used
by Dorrer and Zuegel [5]. Their design approach is
suitable for binary pixelated beam shapers using
DMD SLMs. First, the input Gaussian is captured
at the equivalent plane to the DMD. The target func-
tion is an eighth-order super-Lorentzian, SLðx; yÞ,
whose width and height are referred to the input
Gaussian and given by

G1ðx; yÞ ¼ Go exp
�
2r2

r2G

�
;

SLðx; yÞ ¼ SLo

�
1þ

���� r
rSL

����
8
�
−1
;

ð3Þ

where rSL ¼ rG=1:5 and SLo ¼ 0:4Go. These para-
meters give a target function that does not approach
the Gaussian too closely, and the reflectance function

Fig. 2. Flat-top laser beam optical test bench configuration. Fig. 3. (Color online) DMD pattern design algorithm flowchart.
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does not become too sharply peaked or approach 1.0
(see Fig. 1). An increase in RMS error was observed
when this limit was approached too closely.
Based on the input Gaussian and target super-

Lorentzian functions, the desired reflectance func-
tion is calculated by

R1ðx; yÞ ¼ SLðx; yÞ=G1ðx; yÞ: ð4Þ

This is illustrated in Fig. 1 for rG ¼ N=3 ¼ 256 pixels
and rSL ¼ rG=1:5, whereN ¼ 768. The desired ampli-
tude reflectance, r1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1ðx; yÞ
p

, is then processed by
the error-diffusion algorithm to produce the binary
pixelated DMD pattern by rastering from left to right
in a row and then from top to bottom in successive
rows. Specifically, the binary value of DMDðx; yÞ is
determined by comparing the desired amplitude re-
flectance r1ðx; yÞ modified by the propagated errors
from nearby pixels that have already been processed
to the threshold value of 0.5. The error function is
calculated by

eðx; yÞ ¼ r1ðx; yÞ −DMDðx; yÞ; ð5Þ

and the reflectance function is replaced by

r1ðxþa;yþbÞ¼ r1ðxþa;yþbÞþ cða;bÞ× eðx;yÞ; ð6Þ

where a and b are row and column coordinate shifts
of the nearest neighbor pixels yet to be processed.
The weighting coefficients for the four nearest neigh-
bors are given by

cð1;−1Þ ¼ −3=16; cð1; 0Þ ¼ −5=16;

cð1; 1Þ ¼ −1=16; and cð0; 1Þ ¼ −7=16:
ð7Þ

An iterative algorithm follows the error-diffusion
algorithm to refine the DMD reflectance. The local
peak of the simulated flattop (low-pass filtered) is
found and the corresponding neighboring pixel,
usually (x, yþ 1), on the DMD pattern is set to zero.
Fewer than 20 iterations are needed to converge, and
the RMS error was typically reduced by 10%–30%.
For an optimized error-diffusion algorithm, the
RMS error over the simulated flattop was 0.2% to
0.3% for a 180 pixel diameter disk centered on the
flattop (see Fig. 1). Interestingly, setting the ðx; yÞ
pixel to zero did not perform as well. This RMS error
is due to the DMD pattern and its binary-amplitude
pixels and will be referred to as the pixel-setting er-
ror. In their simulation results using only error diffu-
sion, Dorrer and Zuegel [5] reported a peak error of
2.4% and a RMS error of 0.7% for a somewhat differ-
ent target function, which was low and flat in the cen-
ter with peaks near the edges.
We tried several other methods to generate the

DMD pattern, but none performed as well as error
diffusion without iterative correction. Repeating
Dorrer and Zuegel, we tried a random dither algo-
rithm. Compared to the error-diffusion method, the

random dither algorithm produced much worse re-
sults (RMS error ¼ 3%). Second, electronic screen
methods were used to synthesize the DMD pattern.
The high spatial frequency content of the DMD was
not needed to form a smooth flattop and so a large
unit cell could be used without loss of resolution in
the flat-top beam. Two cases were tried with unit
cells of 17 and 37 pixels. Each unit cell had 18 or
38 equally distributed thresholds, respectively. The
17 pixel unit cell method is described by Stoffel
and Moreland [18], and we extended this method
to a 37 pixel unit cell. The unit cells continuously tile
the surface of the DMD. The best electronic screen
results had RMS errors 1.5 to 2 times larger than
error diffusion without iterative refinement.

Finally, we note that the optical power conversion
efficiency from Gaussian beam to flat-top beam using
our method is dependent on the parameters of the
super-Lorentzian with respect to the input Gaussian.
Coincidentally, for the parameters chosen, rSL ¼
rG=1:5 and SLo ¼ 0:4Go, the power contained in
the flattop is 40% of the input power, virtually iden-
tical to the reduction in the peak power. Conducting
the same efficiency calculation for our experimental
input beam, we obtained a power efficiency of 37%.
For a top-hat beam profile, the maximum possible
power conversion efficiency from a Gaussian input
beam is 39% at a peak power conversion of 60%.
Other target beam profiles, such as a super-
Lorentzian or super-Gaussian, achieve higher power-
conversion efficiency, but the extra converted power
is located in the wings of the distribution and not use-
ful for most applications. However, this energy is use-
ful in reducing diffraction at high angles that would
result from sharp edges in the light distribution.

4. Experimental Results

Based on the design and simulation results shown
above, we conducted experiments to produce a flattop
and measure its quality. The imaging telescope had a
magnification of −5=6 and used 300 and 250mm focal
length lenses for f1 and f2, respectively. This magni-
fication was chosen in part to ensure that both the
input and output beam profiles could be measured
without camera saturation and without changing at-
tenuators in the beam path. We observed that any
change in optics, such as adding or removing at-
tenuators, made the flat-top result worse because
the measured incident beam was not precisely the
same as the one incident on the DMD. A range of pin-
hole diameters was used (from 450 to 650 μm in steps
of 50 μm). Data are presented for the 500 μm pinhole
as it gave the best results.

Based on diffraction analysis, the power delivered
to the desired diffraction order by the DMD device
should scale as the square of the number of pixels
set to the ON state. This was verified by applying
the error-diffusion algorithm for a uniform input va-
lue of r. Using an optical power meter placed at the
focal plane of the first lens (at the desired diffraction
order), a series of optical power values were mea-
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sured corresponding to r set from 0.1 to 1.0 in steps of
0.1. The measured power was normalized to one for
r ¼ 1, all pixels ON. The data are shown in Fig. 4
along with a square-root dependence. This confirms
the use of r1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1ðx; yÞ
p

in the DMD pattern design
algorithm. For the experiments, a polynomial fit to
the measured data was used to convert the desired
diffracted power, R, into an amplitude reflectance,
r, to send to the DMD pattern design algorithm.
The input laser beam was not spatially filtered. Its

cross section and image are shown in Fig. 5. The ex-
perimental results (see Table 1) show that this noisy
quasi-Gaussian input beam was transformed to a
flat-top beam having RMS flatness of<1% over a dia-
meter of 64 camera pixels (0:28mm) and <1:5% over
the entire output beam of 1:43mm diameter. This re-
sult is illustrated graphically in Fig. 6(a), where the
diameters of flat-top regions of a specified RMS error
are shown superimposed on the cross section through
the flat-top beam image.
To show the effect of the pinhole spatial filter, a

5:5mm diameter pinhole was substituted for the
0:5mm pinhole. In Fig. 6(b) the resulting noisy
flat-top cross section is superimposed on the target
super-Lorentzian function. Although noisy, the
ragged unfiltered beam profile is, on average, flat
and follows the target function. Figure 6(c) shows
spatial frequency cross sections of the numerical
two-dimensional Fourier transform of the target
super-Lorentzian and the two experimental results
with 5.5 and 0:5mm pinholes. The spectrum for
the optimum 0:5mm pinhole is seen to follow the
spectrum of the super-Lorentzian down to about
40db below the peak value. For the 5:5mm pinhole,

the larger high-frequency content is visible out to the
cutoff frequency of this larger pinhole. These plots
clearly illustrate the function of the low-pass filter
in converting the binary output from the DMD into
a smooth flat-top beam profile.

Briefly we review the results of tests with other
spatial profiles. The eighth-order super-Gaussian
function with the same radius as the super-Lorent-
zian was visibly sharper in the wings, had a larger
spatial bandwidth, and had three times larger
RMS error when a DMD pattern was designed and
simulated. Lower-order Gaussian functions with
spatial bandwidth similar to the eighth-order
super-Lorentzian were deemed insufficiently flat in
the center region. A cosine taper similar to the
super-Lorentzian was designed and tested optically.
It had a central flat region (Circ function) of radius
rcos ¼ rG=2:8 ¼ 0:5357rSL and a taper width (one-half
of the cosine period) ofΔr ¼ 2rcos. Its measured RMS
flatness was indistinguishable from that of the
eighth-order super-Lorentzian flattop (<3% different
at all measurement points). Thus, the cosine taper
may be more practical for applications requiring that
the flat-top function go to zero within a prescribed
radius.

5. Analysis and Discussion

In addition to an intensity flatness of better than
1.5% RMS, we also assessed the phase flatness of
our flat-top beam. Three factors enter into the eva-
luation of the phase flatness of flat-top beams gener-
ated by our method. First, a 5× telescope is used to
expand and collimate the Gaussian beam from the

Fig. 5. Vertical cross section of the measured quasi-Gaussian in-
put beam and its gray-scale image (inset). The horizontal axis is
scaled by 5=6 to match the scale of the output plane images in
Fig. 6. Each camera pixel is 4:4 μm, and the 1=e2 beam waist at
the output is rG ∼ 420 pixels ¼ 1:85mm.

Table 1. Measured RMS Flatness of the Output Flat-Top Beam

Diameter (pixel) 64 126 196 286 310 324
Diameter (mm) 0.282 0.554 0.862 1.258 1.364 1.426
RMS error (%) 1.0 1.1 1.2 1.3 1.4 1.5

Fig. 4. (Color online) Plot of the uniform amplitude reflectance
sent to the error-diffusion algorithm (fraction of DMD mirrors to
be turned ON) versus the power delivered to the desired diffraction
order (▪) and the calculated square root of the delivered power (▴).
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laser. The collimation of this beam ensures a flat
phase front for the input beam at the DMD face.
Second, the DMD face flatness was measured

using the Michelson interferometer. Many SLMs
based on silicon chip technology possess a curvature

that has a quadratic or spherical component
(that can be compensated by refocusing) and other
aberrations, especially astigmatism. The DMD mod-
ulator that we used had a variation of three fringes
(at 633nm) from center to edge in the short dimen-
sion, and 8 to 10 fringes from center to edge in the
long dimension and was astigmatic. Fortunately,
the central portion that controlled the flat portion
of the flat-top beam was very uniform in phase. In
this area, the maximum-to-minimum phase differ-
ence in both the vertical and horizontal directions
was measured. The result showed that, in the hori-
zontal direction, the phase difference was 0:77π
(0:12 μm in surface height). In the vertical direction,
the phase difference was 0:16π (0:025 μm in surface
height). Excellent DMD face flatness over this region
is an important prerequisite to produce an output
beam profile with good phase flatness.

Finally, the use of a telescope to image the wave-
front leaving the DMD face to the output plane (with
low-pass filtering) ensures that the phase flatness of
the output is of the same quality as the wave leaving
the DMD face. Thus, the uniform output phase front
is another attractive advantage of this method of flat-
top beam production.

When compared with the other methods outlined
in Section 1, refractive optics has produced 5%
RMS flatness using aspheric lenses [6] with, in prin-
ciple, a well-controlled phase. The result is depen-
dent on the quality of the input Gaussian beam.
Although easy to use once the aspheric telescope is
constructed, flexibility and adjustability are limited.
In simulations, an IFTA algorithm produced 1.5%
RMS flatness over the flat-top region [13]. However,
the phase of the output was not controlled by the
iterative routine and its behavior was not presented
in the results. Furthermore, an experimental test
with a phase-only SLMwas not conducted, so a direct
comparison of experimental results is not possible.
Finally, as noted earlier, an approach similar to ours
that used only error diffusion to design a metal mask
followed by a low-pass filter showed simulated beam
shaping with RMS error ¼ 0:7% [5]. Our method has
produced a lower RMS error than other reported
methods, preserved the uniform phase of the wave-
front, and delivered a power conversion efficiency
of nearly 40%. Thus, it meets the criteria set forth
for the first step in producing a flat-top beam suitable
for uniform-lattice, cold atom experiments.

We note that there exists a gap between the best
experimentally measured flatness of 1.4% RMS
(for diameter ¼ 310 camera pixels) and the simu-
lated flatness for the same DMD pattern of 0.3%. Ac-
counting for the sum of the major known errors, one
expects the RMS error in a camera measurement to
be the sum of the photon noise (<0:2%), spatial gain
noise (0.8%), and DMD pixel-setting error (0.3%), giv-
ing a total expected RMS noise of 0.88%. Thus, there
is a residual error in the flat-top beam of about 1.1%
RMS. Although, alignment of the input Gaussian
with the DMD was done while observing the beam’s

Fig. 6. (Color online) (a) Cross section of the experimental flat-top
laser beam with a 500 μm pinhole. (b) Experimental cross section
with a 5:5mmpinhole compared to the ideal super-Lorentzian pro-
file. (c) Spatial frequency spectraof the target super-Lorentzian, the
experimental flat-top beam with a 500 μm pinhole, and the experi-
mental beamwith a 5:5mmpinhole. In (a) and (b), each camera pix-
el is 4:4 μm, while in (c) the pixel number represents spatial
frequency froma1200-pointFourier transformof the flat-top image
(200 pixels¼ 38 lp=mmand zero frequency is at pixel number 600).
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RMS flatness in real time, the experimental flatness
could not be further reduced. For future work, we
propose to employ DMD pattern refinement based
on the recorded output image to further improve
the uniformity of the resulting flat-top beam.

6. Summary

We have demonstrated a DMD-based imaging optical
system that converts a spatially noisy quasi-Gaus-
sian to an eighth-order super-Lorentzian flat-top
beam. An error-diffusion algorithm followed by itera-
tive refinement was used to design the binary DMD
pattern based on an accurate measurement of the
beam incident on the DMD. Following the DMD, a
telescope with a correctly sized pinhole low-pass fil-
tered the flat-top beam and scaled it to the desired
size. An alignment technique was developed to en-
sure that the DMD pattern was correctly positioned
on the incident beam. Experimental measurements
showed 1% RMS flatness over a diameter of
0:28mm in the center of the flat-top beam and better
than 1.5% RMS flatness over its entire 1:43mm dia-
meter. From an interferometric measurement of the
DMD surface flatness in the critical portion of the
flattop, we can infer phase uniformity better than
0:8π across the output beam.
In comparison to other methods of generating flat-

top beams, our approach shows the best result for
RMS flatness with a good uniform phase front. Power
conversion efficiency was 37%. In addition, our
approach is highly flexible and is able to produce
not only flat-top beams with different parameters,
but also any slowly varying target beam shape.
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